If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-96x+100=0
a = 1; b = -96; c = +100;
Δ = b2-4ac
Δ = -962-4·1·100
Δ = 8816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8816}=\sqrt{16*551}=\sqrt{16}*\sqrt{551}=4\sqrt{551}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-4\sqrt{551}}{2*1}=\frac{96-4\sqrt{551}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+4\sqrt{551}}{2*1}=\frac{96+4\sqrt{551}}{2} $
| 5(x+7)=4(1-x) | | x/9-7=- | | 6x-2=16x-32# | | x+30°+40°=180° | | 53p+9=24 | | 14s+98=100 | | 5x=2+15 | | 14x÷7=7x+4 | | 6.7=30.m | | x=1-x/2+x/4-x/8+x/16 | | 2.5*x*x*0.5=4.582575695 | | 2.5xxxx0.5=4.582575695 | | 9x-1=6x+29 | | 5x^2+24x-28=0 | | 10t2–10t+2.5=0 | | 3(x+2)=-x-6=10 | | 3(x+2)-x-6=10 | | x=3+40 | | 4x(2x+1)=4x^2+48 | | 7x+15=9x | | 2^x=81 | | 3+3(p-5)=8(p-4) | | 10x-45=3x+5+4x-5 | | -20x^2+100x+10000=0 | | (5x-6)+(3x-4)=134 | | 5x+13=-2(x-3) | | x(-9)=-45 | | 13/9-6x=26 | | (x^2+5x+4)-(2x^2-3x+6)=0 | | 18x²+39x-24=0 | | -2y-2=6y-18 | | X^2+9x+264=0 |